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Abstract. We investigate by Monte Carlo simulations the critical behaviour of true self- 
avoiding walks ( T S A W S )  on a percolation cluster performed very close to the percolation 
threshold.  Specifically we generate TSAWS on a site-percolated incipient ‘infinite cluster’, 
for various values of the self-avoidance parameter g > 0. We found that such walks exhibit 
critical behaviour different from that of ordinary-self-avoiding walks a n d  also from that  
of random walks of no constraint. The Flory exponent obtained was U = 0 . 4 3 2 ~ 0 . 0 0 5  for 
all g > 0, which agrees well with the Flory-type formula suggested by Rammal.  

Recently Amit et a1 (1983) presented a certain type of random walk as the problem 
of a walk which steps randomly but tries to avoid the previously visited sites. They 
called this a true self-avoiding walk (TSAW). This model was motivated from the 
theoretical interest because of its unusual critical properties, and  the physical realisation 
of it was subsequently described in the statistics of linear polymers in an  extremely 
polydispersed solution with a broad distribution of chain sizes (Family and Daoud 
1984). 

The TSAW is a kinetic process in which the probability p i - ,  of moving from site j 
to its nearest-neighbour site i depends on the number of previous visits n, on the site 
i by 

where the sum in the normalisation factor runs over all nearest-neighbour sites of j 
and the parameter g defines the strength of self-avoidance; the extreme limit of g = 0 
corresponds to ordinary random walks ( R W S ) .  For any g > 0, the excluded-volume 
effect of TSAWS is known to be different from the standard self-avoiding walks  SAW^) 
even for the case of g = W .  Amit et a1 (1983) have shown by renormalisation calculation 
that the upper marginal dimension of TSAWS is two instead of four. Thus for lattice 
dimensionality above two, this model exhibits the critical behaviour similar to the 
classical R W  and below two dimensions it is expected to be different from the RW. The 
Flory-type formula for TSAWS which characterises the mean-square end-to-end distance 
(and equivalently radius of gyration) was obtained by a self-consistent approach 
(Pietronero 1983) and  Flory approximation (Family and Daoud 1984) as 

v = 2/ (  d + 2) 

0305-4470/90/ I43263 + 08S03.50 @ 1990 I O P  Publishing Ltd 3263 



3264 Sang Bub Lee and  MJwung Jin Lee 

where d is the underlying lattice dimensionality. In one dimension, Monte Carlo data 
indeed show the Flory exponent to be about i, regardless of the value of g > 0 (Rammal 
et a1 1984, Bernasconi and  Pietronero 1984). For lattice dimensionality between one 
and  two, if exists at all, one can expect that the Flory exponent of TSAWI\ is greater 
than the mean field value of but less than the one-dimensional value of <. Possible 
candidates of such lattices are the two-dimensional geometrical fractals and the critical 
percolation clusters. 

Various types of random walks have already been studied on various geometrical 
fractals: the ordinary R W  on a Sierpinski gasket exhibits the Flory exponent v smaller 
than the normal lattice value of 4 ( Havlin 1987 and  references therein;), while for SAWS 

v was found to be greater than the normal lattice value of 2 (Kim and  Kahng 1985, 
Elezovic er a1 1987). For T S A W ~ ,  Angles d‘Auriac and Rammal (1984) have redrawn 
a heuristic argument of Amit er a1 (1983) on a fractal substrate and shown that the 
self-avoidance may increase the Flory exponent if 

2 - 2 / 2  -2vR\$.> 0 (3  1 

where VRU’ = d j 2 4  and cf and d are, respectively, spectral and fractal dimensions 
(Alexander and  Orbach 1982, Rammal and Toulouse 1983) of underlying lattices. For 
a family of Sierpinski gasket, d = In(d + l ) / l n  2 and 2 = 2 In(d + l ) / l n (  d +3) ,  and thus 
the condition is satisfied for all d. For an  infinite percolation cluster at percolation 
threshold, if  the conjectured value of 2 = { (Alexander and Orbach 1982) is used, then 
the condition is also satisfied for all d > 1. Therefore for both cases, the asymptotic 
behaviour of TSAWS is expected to be different from that of RWS. Angles d’Auriac and 
Rammal have also carried out Monte Carlo simulations of TSAWS on a Sierpinski gasket 
and obtained v = 0.51 * 0.02. This value of v is slightly greater than both the mean-field 
value and the R W  value on the same lattice but is smaller than (2)  would suggest if 
one merely replaces d by the fractal dimension of the Sierpinski gasket, d = In 3/ln 2. 
Interestingly, however, it agrees well with the Flory-type formula for TSAW on a fractal 
suggested by Rammal (19841, 

The next question one might ask is what the value v would be for T S A W ~  on a 
two-dimensional infinite percolation cluster near percolation threshold, which serves 
as a random fractal substrate with fractal dimension d =  1.896 (Stauffer 1985). For 
ordinary RWS the Flory exponent v was found to be smaller than the normal lattice 
value (Majid e? a1 1984, Havlin and Ben Abraham 1983), and for  SAW^ it is still 
controversial, but seems to be not smaller than the normal lattice value (Kremer 1981, 
Lee and  Nakanishi 1988, Meir and Harris 1989). 

Lam (1984) has studied the TSAW on an  infinite percolation cluster by cell renormali- 
sation study and estimated the Flory exponent, using the finite-size scaling, as v = 0.58. 
This value of v is greater than that of R W S  but smaller than that of T S A W ~  obtained by 
the same method on the fully occupied lattice (Nakanishi and  Family 1984). In general, 
however, critical indices obtained by a small-cell renormalisation cannot be trustworthy 
even when finite-size scaling is employed for several small cell sizes. This can be seen 
from the result on the fully occupied lattice; whereas the known value of v is 4, 
estimated in this way it is about 0.67. Lam also claimed that the statistics of the TSAW 

is much more easily reflected on a percolation cluster than on a full lattice. This is 
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because on a percolation cluster the T S A W  can easily exhibit its characteristic features 
of making loops and self-intersections (because of many dead ends) even for a small 
number of steps, compared to that on a full lattice. Considering these situations, one 
may conclude that a small-cell renormalisation study cannot clarify whether z' on a 
percolation cluster is greater or smaller than the full lattice value. Therefore, it is 
interesting to study the critical behaviour of TSAWI on a percolation cluster by extensive 
Monte Carlo simulations. 

In  this paper we study by Monte Carlo simulation -rsAws on an  infinite percolation 
cluster for a square lattice at percolation probability very close to the percolation 
threshold p c .  We restrict our  works to two dimensions because d < d ,  for two- 
dimensional percolation clusters. We specifically consider the end-to-end distance and  
radius of gyration for several selected values of the excluded-volume parameter g. 
Details of our method are very similar to those of SAWS on a percolation cluster 
described by Lee et a/ (1989). We generate the site-percolated incipient infinite clusters 
of linear size L = 4 0 0  defined as clusters which span the cell along all coordinate 
directions, and after identifying such clusters, any two opposite edges are connected 
by periodic boundaries for the purpose of performing TSAWS on them. The starting 
points of the walks were selected randomly and, for each starting point, a certain 
predetermined number of walks were generated for walk averages for a given starting 
point. The disorder average was also carried out for many different starting points and  
over many different disorder configurations. We have generated 200 walks for each 
direction of nearest-neighbour undiluted sites from the starting point and  200 starting 
points were selected for each cluster. Our walks are of 400-800 steps. For this value, 
we found that walks can never return to the starting point after going out of the cell 
through one edge and coming into the cell from the opposite edge, thus wrapping 
around the cell by periodic boundary conditions. This guarantees that TSAWS are fully 
confined in a fractal region even when we employ the periodic boundaries. 

The mean-square end-to-end distance ( R ; )  of the TSAM at upper marginal 
dimension d ,  was found by renormalisation calculations (Amit et a /  1983) to have the 
form of 

( R : )  = AN" ( In  N)" In(ln N )  + . . . )  

with v = 1 .  For lattice dimensionality below d,, one can expect that ( R : )  has the form 
of 

( R?,) zc A'"' (6) 

with Flory exponent v > :. In  any of these cases, i t  would be very difficult to find the 
critical exponent v accurately, because of the existing correction terms, by using the 
usual method of plotting ( R ; )  against N in a double logarithmic scale and estimating 
the slope of the plot. We instead express v in terms of its effective value determined 
by T S A W  of up to N steps, denoted by U\, defined by 

N ( R ; )  1 
v\ = 

( R f )  + ( R ) + 2E ,' I (  R :) - 5 
If (R:)  is of the form (5), then the asymptotic expression for v 1  should be 

( 7 )  
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If (I?;) is of the form (6),  then 

VI, = v + f ( N - ’ )  (9) 

where f( N - ’ )  is a certain function which depends on the correction terms neglected 
in (6) and vanishes as N + E .  Thus the intercept on the ordinate in the plot of v,, 
against N-’  gives the Flory exponent v. 

We have first carried out simulations for p = 0.7. Since it is known that the percola- 
tion cluster shows a Euclidian lattice structure for p away from p c  where the best 
known p c  is p c  = 0.592 745 * 0.000 002 (Ziff and Sapoval 1986), one can expect that the 
TSAW exhibits a critical behaviour similar to that on the normal lattice. Data for g = 
averaged over 35 clusters are plotted in figure 1 in terms of their effective values of v, 
obtained from the mean-square radii of gyration, as a function of N-’ .  The inset is 
the plot of vI, as a function of l / l n  N. If we assume B<< 1 in ( 5 ) ,  thus neglecting all 
corrections except the leading logarithmic one, then v V  must show a linear behaviour 
in the inset. As is clear from the plot, data indeed show such behaviour for a wide 
range of N 2 60, indicating that the leading correction of (I?:) is indeed logarithmic. 
The intercept on the ordinate is the Flory exponent v and the slope a / 2 .  Estimated 
in this way are v = 0.497 * 0.005 and (Y = 0.676 * 0.002, where the quoted errors are 
those associated with linear regression and there may be additional statistical errors 
not accounted for. This value of v is indeed very close to the known value of the TSAW 

on the normal lattice, indicating that the lattice dilution does not affect the critical 
behaviour as long as the concentration of the undiluted sites is not critical. Our estimate 
of a is also comparable to the normal lattice value. Although the renormalisation 
calculation indicates a = 1 (Obukhov and Peliti 1983), our Monte Carlo data of lo5 
walks up  to 1000 steps for g = C O ,  performed on a regular square lattice, produce the 
best fit with v =; and a = 0.7 (not shown). In fact, the data for p = 0.7 are not very 

I I , I” \I 
I 

0 0 32 0 O L  006 0 08 ( 
l / N  

0 

Figure 1. The  effective exponent U, of ( 7 )  against 1 / N  from the mean-square radius of 
gyration of T S A W ~  on a percolation cluster for p = 0.7 and  g = cC. The full line indicates 
the numerical  fit using the leading logarithmic correction in ( 8 )  with the estimated values 
of 1’ a n d  a from the inset, and  the error bars were calculated from seven batches of data  
set, each of which was a\eraged over five clusters. 
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different from the corresponding data on a regular lattice, and the plots of v h  for the 
two cases nearly overlap one another over the wide range of N. 

We have also studied in a similar way with the mean-square end-to-end distance 
and the results were found to be essentially the same as those for radius of gyration 
except the larger fluctuations, as expected from the concept of universality. 

Simulations for p = 0.592 77 were also carried out for several selected values of g, 
g = 1.0, 2.0, and g = CO. Plotted in figure 2 are the effective values of Y u p  to 400 steps, 
obtained from the mean-square radius of gyration, averaged over 40-65 clusters 
depending on g. Since the infinite cluster near p ,  is known to show the fractal structure 
with its fractal dimension d < d ,  ( d  = 91/48, Stauffer 1985), then one can expect that 
the TSAW exhibits its mean end-to-end distance in the form of (6) with Flory exponent 
v larger than :. Surprisingly, however, our Monte Carlo data indicate that v is smaller 
than the normal lattice value for all g > 0, as shown in the figure. For N = 400, estimated 
values of v y  are already less than 0.47 and they seem to decrease, as N increases, far 
below the normal lattice value. Data for all three cases exhibit large corrections to 
scaling and, in addition, they appear to show asymptotic behaviour rather similar to 
the case for p = 0.7, indicating that the leading correction to scaling might be logarith- 
mic. In fact, data seem to fit well with the expression in (5) for N 3 2 0 0 .  The full 
curves in the figure are logarithmic fits with the fitting parameters v and a obtained 
in the same way as in the inset in figure 1. The values of (Y, a )  used are (0.354, 1.30), 
(0.32, 1.76) and (0.32, 1.90), for g = 1.0, 2.0 and CC, respectively. However, we claim 
that such logarithmic fits cannot be accepted in at least two respects. Firstly, the 
estimated v and a appear to depend on the self-avoidance parameter g. Since Y and 
a are the universal critical exponents, they are not supposed to depend upon the 
details of the model such as the parameter g, as long as g > 0. Nevertheless, similar 
studies with mean-square end-to-end distance also result in different values of a. 

0 3  
0 0.02 0 04 0.06 0 08 0.10 

1 / N  

Figure 2. The effective exponent of 17) against l / N  from the mean-square radius of 
gyration of TSAWs on a percolation cluster for p = 0.592.77. Points a r e  the Monte Carlo 
data  and  the full curves are  the numerical fit using the logarithmic correction in (8 ) .  The 
errors were calculated from 9-13 batches of da ta  set, each of which was ateraged over 5 
clusters. 
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Secondly, the critical exponent v estimated from such a logarithmic fit appears to be 
smaller than the ordinary R W  value (vRw=0.35 ,  Havlin and Ben-Abraham 1983). 
For any g > 0, TSAWS in general tend to avoid the previously visited sites. The effect 
of such a trend is known to enhance the end-to-end distance and, therefore, the Flory 
exponent of the TSAWS is not expected to be smaller than that of the R W ~ .  In  addition, 
the condition in (3) suggests that the TSAW exhibits a Flory exponent larger than the 
R W  value. 

As the corrections to scaling are unexpectedly large for relatively large values of 
g ( g  3 l.O), it seems rather difficult to estimate the Flory exponent from the plots in 
figure 2 .  For sufficiently large values of g, the TSAW behave like the SAWS for the first 
several steps and, therefore, v L ' s  are similar to those for the S A W S  for small N. As 
N + CO, however, v, must eventually cross over to TSAW behaviour, thus exhibiting a 
sharp decrease, as shown in figure 2. On the other hand, for sufficiently small but 
positive g, one can expect that v ,  for the T S A W ~  is not very different from that of the 
R W S  for small N and increases, as N + 2, to the asymptotic value of v1-st,bv, assuming 
that v T s A \ ~ >  V R ~ , .  Thus one may expect that there might be a moderate value of g, 
for which the corrections to scaling might be unimportant. We therefore carried out 
additional simulations for g = 0 and 0.1. 

Our simulation results for g = 0, and  0.1 up to 800 steps are shown in figure 3 
together with those for g = 1.0 and g =E. Plotted in the figure are the v ,  calculated 
from the mean-square end-to-end distance. (Note  that we have plotted the large-N 
region in this plot.) For g =0 ,  i.e. for R W S ,  our  data indicate that vRL+ - 0 . 3 6 ~ 0 . 0 1 ,  
which is reasonably close to the previous estimates, v ~ ~ ~ = 0 . 3 5  (Havlin and Ben- 
Abraham 1983, Majid et a /  1984). Data for g = 0.1 are nearly flat over the wide range 
of N,  suggesting that the correction terms are unimportant for this value of g. As is 
clear from the plot, data for all g > 0 indicate the same asymptotic v, as expected from 
the universality. The estimated value of Y is 

v = 0.432 + 0.005 

I 9 - =  , . .I 

0 . 5 1  .uc 

-... - .".... 5 .... . . . . . I . . . 1 g.0 

0 0 01 0 02  0 03 
1 / N  

Figure 3. The effectike exponent 1' of ( 7 1  against lV,V from the mean-square end-to-end 
distance of T S 4 \ S \  on a percolation cluster for p = 0.592 7 7 .  The  errors &ere calculated 
from 5-13 batches of data  set, each of which were averaged ober 5 clusters. 
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which is considerably smaller than that obtained by the cell renormalisation study but 
much larger than that of the ordinary RU’ on a percolation cluster. Interestingly, this 
value of U agrees well with the Flory-type formula in ( 4 ) .  If we use the conjectured 
value of d = 4 / 3  (Alexander and  Orbach, 1981) and 6 = 9 1 / 4 8 ,  then (41 would be 
v = 0.422, which is reasonably close to our estimation. 

Shown in figure 4 is the double logarithmic plot of mean-square end-to-end distance 
as a function of N for several different values of g. Points are the simulation data and  
the full lines for each set of data are those with the slopes of 2 v  for each g, i.e. slope 
of 0.7 for g = O  and of about 0.86 for all g>O.  As is clear from the figure, simulation 
data for g = 0.1 fit well with the full line for the entire region of N, indicating that the 
exponent v is indeed close to 0.43. For g = 1.0 and g = W, slopes are larger than 2 u  
for small N and decrease as N increases. Up to 400 steps, the asymptotic slope of 2 u  
( ~ 0 . 8 6 )  was not reached for both cases; however, they seem to show an ebentual 
crossover to the slope similar to that of fu l l  lines for N much larger than we obtained 
in our simulation. 

I I 1 I 
1 10 100 1000 

N 

Figure 4. Plots of In\ R <  agdinst In ,% for TSAM, on a percolation cluster near percolation 
threshold for Larious la lues  o f  g. Points are  the simulation data and  the full lines are  those 
with the  askmptotic slope 2v. \*here v = 0.35 for g = 0 a n d  0.43 for all g > 0. 

We have also studied the mean number of distinct sites S ,  visited during N steps 
by the TSAW. This quantity is also known to satisfy the power law S, - N ’ .  The 
exponent s was numerically studied from the Monte Carlo data of S, in a similar 
way to that of U, with s, defined similarly to ( 7 ) .  The s, shows large corrections for 
large and small values of g and, for g = 1.0, corrections to scaling appears to be nearly 
unimportant. The estimated value of s is s = 0.79 * 0.02, which appears to be nearly 
twice as big as U. This value is also reasonably close to but slightly greater than that 
of TSAWS on  a Sierpinski gasket (Angeles d’Auriac and Rammal 1984). 

In summary, we have carried out Monte Carlo simulations for TSAU’~ performed 
on a site-percolated two-dimensional percolation cluster for the square lattice. For 
p = 0.7, the critical behaviour of T S A W ~  was found to be rather similar to that on the 
fully occupied lattice, as expected. For p close to p c ,  on the other hand, the critical 
behaviour of TSAWS is different from that on the fully occupied lattice and also from 
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that of RWS. The Flory exponent was found to be v = 0.432 * 0.005, which is considerably 
smaller than that on the normal lattice. The smaller value of Y on a percolation cluster 
may be explained as follows. Since the percolation cluster generated near p c  contains 
many dangling bonds and blobs, the dilution may effectively trap the walk and induce 
self-intersections or immediate returns (backscattering). The occurence of this effect 
increases as the length of walks increases. The disorder average of this effect favours 
shorter end-to-end distance and it reflects the smaller value of v. This kind of effect 
is very similar to the case of RWS, where the Flory exponent is also considerably smaller 
than that on the regular lattice. However, for TSAWS, since the self-avoidance parameter 
g enhances the end-to-end distance, the Flory exponent Y seems to be greater than 
the R W  value, as expected from (3). 
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